466

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-23, NO. 4, JuLy 1977

A New Universal Coding Scheme for the Binary

Memoryless Source

JOHN C. LAWRENCE

Abstract—A coding scheme for the binary memoryless source
is presented. The scheme is an extension of a scheme discovered by
Lynch and Davisson and developed by Schalkwijk, and is based
upon the Schalkwijk algerithm for the Lynch-Davisson (LD) code.

The new coding scheme is shown to be asymptotically optimal as

the block length approachesinfinity, regardless of the source sta-
tistics. Although the LD scheme is minimax-universal, it is not
optimal for low source entropies and finite block lengths. Run
length coding is shown to be closer to optimal for low source en-
tropies, and the new scheme is shown to be practically equivalent
" torun length coding in this range, ’ :

I. INTRODUCTION

SOURCE CODING scheme was proposed by Lynch
L [1] and Davisson [2] in 1966. In 1972, Schalkwijk [3]
presented an algorithm for coding binary sources. Davisson
{4] pointed out that the Schalkwijk scheme was similar to
the Lynch- Davisson (LD) scheme. The basic algorithm
used was the same in each case. However, Lynch and
Davisson implemented the algorithm as a block-to-variable
scheme which does not require knowledge of the source
statistics. The variable-to-block Schalkwijk implemen-
tation does require knowledge of the source statistics.
Schalkwijk’s implementation is based on the ranking of
" fixed-weight binary sequences, whereas the LD scheme is
based on the ranking of fixed-length sequences.

Schalkwijk also indicated how the algorithm could be
extended to nonbinary sources. The original LD algorithm
was for generalized sources, but it was basically a binary
algorithm with a capability for handling nonbinary sources
tacked on.

In his conclusions, Schalkwijk pointed out that with a
slight modification, his algorithm could be used for
block-to-variable length coding, although he did not de-
velop this case. It is this form of the Schalkwijk algorithm
that is equivalent to the binary case of the LD algo-
rithm.

Later, Davisson [5] showed that the block-to-variable
algorithm is asymptotically optimal for the binary mem-
oryless source. He also showed that the scheme is mini-
max-universal, the strongest and most desirable kind of
universal coding.

In this paper, we start with the block-to-variable algo-
rithm and point out its limitation for finite block lengths.
The discussion is slanted towards Schalkwijk’s approach,
since his development is considered to be pedagogically

Manuscript received May 27, 1975 revised November 15, 1976.
The author is at 1815 Gatepost Rd., Encinitas, CA 92024.

mare transparent. A new coding scheme based on the same
underlying algorithm is presented. This scheme overcomes
the limitation of the L.ID scheme for finite block lengths.
The performance of our scheme is compared with that of
the LD scheme and also with run length coding.

I1. SCHALKWIJK ALGORYTHM FOR THE LD ConE

In the exposition of the Schalkwijk algorithm for the LD
code, we let the incoming sequence of source bits determine
arandom walk in Pascal’s triangle starting at the apex and
proceeding down a number of rows equal to the block
length. Details of the algorithm are given in Appendix A.
The encoding process can terminate on any point of the
last row. o

The decoder must know which point the encoding pro-
cess terminated on, since this is the “starting point” for the
decoding process. Therefore, to distinguish among possible
starting points, a fixed-length prefix is provided. The bi-
nary representation of the running sum, which is computed
in the encoding process, becomes the suffix. If the input
block length is IV bits, the length of the prefix will be equal
to the greatest integer which has a value less than logs (N
+ 1) + 1 bits. The number of bits required for the suffix is
equal t-: the greatest integer which has a value less than

N
log2 () + 1 bits, where w is the weight of the block. The
w

length of the suffix will vary depending on the starting
point.

Davisson's results [5, pp 786-787] which were derived
for “sequence time coding,” [1}, [2] are also applicable to
the Schalkwijk block-to-variable scheme, since the
schemes are identical. It is assumed that the binary
memoryless source is characterized by the fixed but un-
known parameter p which is equal to the probability of a
one. Following Davisson, the per letter coding rate is at
most

1 1 N
- 1 o +l +2 —] Ty
~ og2 (V +1) +2) + - logs (u)

0<w=N. (1)

The first term goes to zero as N — «. The second term
converges to H(p) = —p loga p — (1 — p) logs (1 — p),
where p = limy—.. (w/N). Therefore, the scheme is
asymptotically optimum in terms of Shannon’s noiseless
coding theorem {6]. The scheme is also minimax-universal,
which is Davisson's term for the strongest and most de-

LAWRENCE: RINARY MEMORYLESS SOURCE

sirable kind of universal coding. When a coding scheme is
minimax-universal, the user can transmit the source out-
put at a rate per symbol arbitrarily close to the source en-
tropy rate, uniformly over all values of p, by taking N large
enough. The proof that the block-to-variable coding
scheme is minimax-universal is presented in Davisson’s

paper {5, p. 789).

111. LIMITATION OF THE LD CODING SCHEME

The main limitation of the LD coding scheme is its
performance at low entropies for finite block lengths.
Consider the per letter rate as p — 0. The second term in
(1) approaches zero, while the first term remains con-
stant. .

The presence of the first term in (1) is due to the prefix
in the coding scheme. This term limits the minimum per
letter coding rate or, by the same token, the maximum
compression that can be achieved at low entropies.

Let us compare a simple ad hoc scheme, such as.run
length coding, with the LD scheme. For the run length

“scheme, a block of N bits contains the binary representa-
tion of the length of the run of zeroes.

.. We take the relative measure of complexity for all
schemes considered in this paper to be the block length.
Therefore, when making a comparison, we will always
‘consider schemes of the same block length.

For example, let us assume that N = 37. Also, let us as-

sume an incoming bit sequence consisting of 740 zeroes.

The run length scheme will encode the 740 zeroes in one

block, and the resultant compression ratio is 740/37 = 20.
On the other hand, the LD encoder will segment the in-
coming sequence into 20 subsequences of 37 zeroes each

and encode each subsequence separately. A six-bit prefix -

is required since there are 38 possible weights in a 37-bit
block, but no suffix is required. The compression ratio for
each block will be 37/6 = 6.17, which will also be equal to
the overall compression ratio.

: As the preceding example makes clear, the block length
~of the LD scheme, and hence the complexity, would have
to be increased considerably before the performance would
.compare favorably with run length coding for low entropy
‘sequences.

IV. MAXIMUM ENTROPY VARIABLE-TO-BLOCK
CODING

The coding scheme presented herein overcomes the
limitation of the LD block-to-variable scheme. It is called
maximum entropy variable-to-block coding, a term which
will be explained later. First, an explanation of the scheme
- is given. Then, it is proved that the scheme is asymptoti-
cally optimal. Fmally, we show that the low entropy per-
formance is practically as good as that of run length cod-
ing.

Again, we visualize the coding process as a random walk
in Pascal’s triangle, starting at the apex and proceeding
downward until a boundary is reached. When the bound-
ary is reached, the input is terminated and the running

467

sum, which has been computed according to the algorithm,
becomes the suffix of the output block. Let S be equal to
the suffix length.

The essential difference between this scheme and the
Schalkwijk scheme is the way in which the boundary is
defined. Let (n,w) denote the wth element of the nth row
of Pascal’s triangle. The boundary consists of the elements
(n,w*) and is defined such that the following conditions
hold

logg(:)SS,
+
logz(n*+l)>8 forwsg,
n+1
log2< Lt)>S,

With reference to Fig. 1, the preceding conditions can
be intuitively interpreted as follows. Assume that the
random walk has proceeded until the element (n,w) has

(2)

n
forw>—.
2

been reached and that (n

) < 25, Also, we assume that w
w A A

< n/2,i.e., the run contains more zeroes than ones. Then,
if the next element is a one, the random walk would pro-
ceed one step in the —Y direction to the g]ement (n+1lw

. . + R N)
+ 1). If the value of this element (:} + i) exceeds 25, then

the element (n,w) is a boundary element. If the encoding
procedure terminates on a boundary element, then the
encoded word can always be expressed in S bits, since there
are at most 25 possible ways of reaching a bouridary ele-
ment. Fig. 1 illustrates the construction of the boundary
in Pascal’s triangle for S = 31. Boundary elements are
denoted 2. Nonboundary elements are denoted by their
numerical value or the letter x. Elements exceeding 23! are
denoted by “0.”

The first 32 rows contain no boundary elements The
first boundary elements occur in the 3.3rd row: (33,15),
(33,16), (33,17), and (33,18). Row 34 contains three
boundary elements for which w < 17 and three for which
w > 17. Row 35 contains four boundary elements; row 36,
two boundary elements; etc. For rows greater than the
36th, there will be either two or four boundary elements
per row. The last boundary elements are the first and last
two elements of the 25! st row, i.e., (23%,1) and (231,231 +
1).

We divide the boundary elements into sets as follows.
Consider two boundary elements (n,,w;) and (np,w}). If
w, = w;, then the beundary elements belong to the same
set. Let n, be the row number of the row containing the
first boundary elements. Then, there will be a total of n,
+ 1 sets of boundary elements. In the example of Fig. 1,
there are 34 sets.

A significant difference between the LD scheme and the
scheme presented herein is the way-in which runs are al-
lowed to terminate. In the Schalkwijk algorithm for the LD

72

15 20 15
3535
28 5% 70

IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 1977

56

L X XXX XX XXX, ..

« X X X2222XXX. . .

Fig. 1. Construction of boundary in Pascal’s triangle.

scheme, a source run could terminate on any boundary
" element, i.e., every boundary element is a “starting point.”
In our scheme, only one starting point is allowed for each
set of boundary elements. How the source runs are made
to terminate only on starting points will be discussed later.
The stasting point for each set of boundary elements is
defined to be that boundary element (n*,w*) such that n*
= n for all boundary elements (n,w*) in that set. All
starting points are shown in boxes in Fig. 1.

Consider the set of binary sequences of length n and

o n .
weight w. The set has () elements. Now consider the set
w

of such sets where n takes on a different value for each set,
w =< n <, and w is fixed. The set for which n and w cor-
respond to a starting point contains the largest number of
members, each of which can still be represented in S bits.

This follows from the facts that log, (n‘). < S and log
w

n*+1
< w*
“maximum entropy” variable-to-block scheme.

The total number of starting points is related to the
suffix length S in the following way. We have the in-

) > S. For this reason, we call our scheme the

25
) for S even. For S odd, we

equality (ng) <28« (S

S . 28
<25« . is it follows that,
have <[S+_1]/2> 2 (S) From this it follows tha

if n; is the number of the row in which the first boundary
element occurs, S < n; +1 <28,

Note that the shortest encoded source sequence will be
at least S — 1 bits in length. The total number of sets of
boundary elements (which is equal to n; + 1) is at most 2S.
Since there is one starting point per set, the total number
of starting points is at most 25 and, therefore, can be
specified in a prefix of at most. logs S + 2 bits. Since the
construction of the starting points in Pascal’s triangle is
perfectly symmetrical, we can set aside one bit of the prefix
to specify whether the random walk dictated by the in-
coming source bits reaches the boundary in the left or right
half. This 1-bit prefix then will specify a “0-coded” or
“1-coded” run. The starting points on the left side are
numbered consecutively from top to bottom and their rank
determines the remaining bits of the prefix. The entire
encoded block consists of at most N =8 + loga S +2
bits. -
The computation of the suffix is exactly the same as in
the Schalkwijk algorithm for the LD scheme. Starting at
the apex, the random walk dictated by the incoming source
bits proceeds downward in Pascal’s triangle, moving a step
in the —X direction when the incoming bit is a zero and 3
step in the —Y direction when the incoming bit is a one-
Additionally, if the incoming bit is a one, the value of the

element ore step in the X direction from the element
which has been moved to is added to the running sum
which equals the value of the suffix when the process ter-
minates.

To simplify the discussion, we will assume that the run
contains more zeroes than ones so that we can confine our
attention to the left hall of Pascal’s triangle. Eventually,
the random walk will reach a boundary element. At this
point, no more source bits can be accepted. Since, in gen-
eral, we are not yet at a starting point, we add “dummy” !
zeroes to the source sequence, advancing one row in Pas-
cal’s triangle with the addition of each zero until a starting
point is reached. This addition of *dummy" zeroes insures
that every sequence which is coded terminates on a starting
point. At the decoder, the starting point is determined by
decoding the prefix and then the suffix is decoded relative
1o that starting point. Then all initial consecutive zeroes
are stripped off, thus eliminating the dummy bits which
were added by the encoder. However, the maximum
number of zeroes that can be stripped off without de-
stroying data bits is equal to one less than the number of

" boundary elements in the set corresponding to the starting
point. This precaution must be taken since the boundary
_element contained in the lowest order row of each set can
be approached by either a zero or a one. Every other
boundary element in the set can be approached only by a
one. Again, the decoded bit sequence must be reversed to
~ obtain the original ordering.

As an example, consider a sequence of 12 zeroes, fol-
lowed by 12 ones, followed by 11 zeroes, followed by a one.
This sequence is indicated by arrows in Fig. 1. This would
place us on the 13th element of row 36, which is shown
encircled in Fig. 1. The input sequence is terminated at this
point. One dummy zero is added to bring us to the starting
point, which is the element (37,13). The running sum at

. s L. + .
this point is equal to)%, (“ w). T'his becomes the
~ w

value of the suffix. Since the starting point (37,13) is the
fifth starting point from the top, the prefix would be
000101. '

V. OPTIMALITY OF MAXIMUM ENTROPY CODING
SCHEME

We shall consider a composite binary source in which
the probability p of a one is chosen by nature randomly
according to the uniform probability law on (0,1) and then

lixed for all time. The probability, given p, that any mes-
sage block of length n contains w ones is

p¥(l = p)-e, (3

4 o were imown, a per letfer codeword length at least equal
Lo the entropy H(p) = —p loga p — (1 — p) loga (1 = p)
would be required to block encode the source. Although
P is unknown, the composite source output probabilities

? See [3] for another example of the use of dummy bits.

are known. In fact, the probability of any given message
containing w ones in n outputs is simply

1 1 ny-1!
. w(l - p)r-ed =—<) :
fop(p) P=""7\u

Davisson [2] has shown that the probabilities of (4) provide
codes as good asymptotically as the probabilities of (3) with
p known exactly. This means that it is possible to code the
binary memoryless source in such a way that the resulting
data compression is as great when p is not known as it
would be if p were known exactly.

In Appendix B, we prove that the per letter coding rate
of the maximum entropy scheme approaches the optimal
limit as the block length approaches infinity. Therefore,
we have the following.

(4)

Theorem 1: For the maximum entropy variable-to-block
coding scheme, the following relation holds:

lim X = Hip), 5)

New

0<p=1

where n = number of input bits, N = number of output
bits, and where the limit is obtained with probability one
(wpl).

VI. PERFORMANCE CHARACTERISTICS

We now compute the average per letter coding rates for
the schemes considered in this paper for the same block
length and plot the results. Fig. 2 presents the results for
1) run length coding, 2) Lynch~Davisson coding, and 3)
maximum entropy coding. Also, H(p) is shown. The curves
are symmetrical about p = %. Therefore, only the results"
for 0 < p < Y% are shown. The block length is 37 bits for all
cases. The general nature of the results has already been
made clear. LD coding is close to optimal in the vicinity of |
P = 1%, but approaches a nonzero asymptote as p — 0 and
p — 1. Run length coding outperforms LD coding for small
p. The maximum entropy scheme stays close to optimal
for p very close to either zero or one, as well as for p in the
vicinity of %. -~ '

The formulas from which the results were computed
were derived as follows. Let N equal the block length and
n be a variable representing either input run length or
output codeword length.

We start with run Jength coding. A one bit prefix is 0 (1)
if the first bit of the incoming sequence is a 0 (1) and the
run is all zeroes (ones). This bit is provided so that the run
length coding scheme correspends to the other schemes in
which an initial bit specifies either the left or right half of
Pascal’s triangle, i.e., a “0-coded” or “1-coded” run.

For the purposes of the following explanation, we as-
sume that the source run consists of a string of zeroes ter-
minated by a one. A similar explanation applies if the run
consists of a string of ones terminated by a zero. The suffix
consisting of N — 1 bits contains the binary representation
of a number which is one less than the number of zeroes in
the run. The maximum number of bits that can be ac-
cepted is 2V-1, (2V-1 — 1) zeroes followed by a one is coded

ot

\

\

Average Per-ldtter Coding Rate

o.cot +

IEEE, TRANSACTIONS ON INFORMATION THEORY, JULY 1977

\ \— Run Length

Lynch-Davisson

M Ferimum Entrony

Entropy of a Einary, Memoryless Source - H(p)

Input Block Length of L D Schemes = 37 bits

Qutput Block Length of Run Lenth and Maximum Entropy Schemes = 37 bits

.00t .60t 8.0}

3
+

0.1 e.5

p = Probability of 2 "1"

Fig. 2. Average per letter coding rate versus probability p of *1.”

as the binary representation of 2¥~1 — 2, and the all zero
run of 2¥-1 bits is encoded as the binary representation
of 2V=1 — 1. The expression for averaze per letter coding
rate is

N\R 2871 /N
(5) =% ()1 =prtp+pmta - pl

n

+ (2,{31_,) (1 = p)**=* 4 p2"). (6)

The minimum run length is two bits (01 or 10). The
probability of arun of n — 1 zeroes and a one is simply (1
— p)"~1p. There are four possible runs of length 2¥-1; one
consisting of all zeroes (ones) except the last bit, which is
1(0) and one consisting of all zeroes (ones). The last term
in the above equation accounts for the all zero (one)
run.

For the LD scheme, the boundary consists of the ele-
ments in the Nth row of Pascal's triangle. The probability
of the two-dimensional random walk terminating at the
point (N,w) is the probability of w ones in N bits; namely

(N) p*(1 — p)N-«. The number of encoded bits is equal
w
N
ton = logy (N + 1) + log, () + 2. Thus,
, w

()"

1 ¥
Nu.v=0

]

loga (N + 1) + loga (N) + 2’
w

: {(N) (1 = pyN-u

. (7

For the maximum entropy scheme, there are two types
of boundary points as illustrated in Fig. 3. The probability
of the two-dimensional random walk being absorhed at

. . 1 . . -
point A is (n’ 1) p¥ (1 — p)*~=° since the walk must
w

pass through point B. The probability of the two-dimen-
o

sional random walk being absorbed at point C is (‘>
w

p** (1 — p)*~**, since point C can be approached either
through point D or point E. Note that point C represents
the initial boundary point in some boundary point set. Let
jw,;*} be the set of initia) points. Therefore,

()e=n £ ()L pra-pre

+NY (1) (" " 1) pT(1 = p)r=ut, (8)
w,e \I w*
where n, is the first row containing a boundary element.
The maximum and minimum values of average per let-
ter coding rate for the three schemes can also be found.
For run length coding

(9}

o= m () = () =5
O im®-), 25w

u\\‘RENEIE: BINARY MEMORYLESS SOURCE

Fig. 3. lustrating two types of boundary elements.

since, as p approaches zero, all the probability is concen-
trated in the all zero run of length 2¥-1,
Tor LD coding

A LD . i LD
) =i, ()
N max p—1/2 N max

=N+Ioi§!\’+2;1+l_9g_}3£\7_)
- LD = LD
o im G (R).
=log2}}\\i+2=]o§3N. (12)
For our scheme
N\L . /N\L _ /N\L
N) I)
=S;1_‘_’g123= 1+1°g§8 (13)
ME Ry L
) - m -)
Stlops L les g,

It can be seen that the performance of run length coding
is superior to the other two schemes as p approaches zero,
although cur scheme is practically as good. For p 2 0.08,
the LD scheme is the best, although it outperforms our
scheme orly slightly. Between these two extreanes, the
maxirniin entropy scheme is superior to the others.

VII. REMARKS

There are two simple ways to implement the maximum
entropy coding scheme. One is to store the necessary ele-
ments of Pascal’s triangle in a read-only memory. Ancther
is to compute the elements a row at a time. This compu-
tatinn requires only one addition per element,

T'he algusitlim can be extended to the M-ary case as
Schalkwijk’s results indicate. A version of the maximum
entropy source coding scheme has been developed and
implemented in hardware at the Naval Electronics Lab-
oratory Center at San Diego, CA. It has been applied to the
Processing of pictorial data [7]. Data transformation
techniques were necessary in order to convert the actual

471

Fig. 4. Schalkwijk block-to-variable coding using Pascal’s triangle.

source, which is nonbinary and not memoryless, into an
spproximation of a binary memoryless source. The scheme
also seems promising for speech compression.

APPENDIX A

Consider the example of Fig. 4. Taking the X and Y directions
as shown, the coding process proceeds as follows. If the incoming
source bit is a zero, take one step in the — X direction. If the in-
coming source bit is a one, take one step in the — Y direction and
add to the running sum the number one step in the direction from
this point. For example, with reference to Fig. 4, if the block
length is N = 6 and the incoming source sequence is 010100 - - -,
the running sum would be generated as follows. Since the first
bitis a 0, take one step in the — X direction to 1. The second bit
is a 1; take one step in the — Y direction to 2 and add to the run-
ning sum the number one step in the X direction from this point,
which is 1. The third bit is a 0; take one step in the —X direction
to 3. The fourth bit is a 1; take one step in the —Y direction to 6
and add the number one step in the X direction from this point,
which is 3, to the running sum giving 3 + 1 = 4. The last two bits
are zeroes. Take two steps in the ~X direction first to 10 and then
to 15, which is the termination point for the encoding process.
This point is also the starting point for the decoding process.
Therefore, it will be referred to as the “starting point.”

The decoding procedure is the inverse of the encoding proce-
dure. Beginning at the starting point, if the running sum is less
than the number one step in the X direction, take one step in the
X direction and record a 0. If the running sum is greater than or
equal to the number one step in the X direction, substract that
number from the running sum, record a 1, and move one step in
the Y direction. The process will terminate at the apex. Since the
last bit encoded was the first bit decoded, the decoded sequence
will have to be reversed to obtain the original sequence.

For example, with reference to Fig. 4 again, starting at 15, the
running sum 4 is less than the number one step in the X direction
which is 10. Take one step in the X directionto 10 and record a
0. The running sum, 4, is Jess than the number 6, which is one step
in the X direction from 10. Therefore, move one step in the X
direction to 6 and record 2 0. The running sum, 4, is greater than
the number one step in the X direction from 6 which is 3.
Therefore, subtract 3 from 4 leaving 1, move one step in the Y
direction to 3 and record a 1. The running sum, 1, is less than the
number one step in the X direction from 3. Therefore, move one
step in the X direction to 2 and record a 0. The running sum, 1,
is not less than the number one step in the X direction from 2,
which is 1. Therefore, subtract 1 fromThe running sum leaving
0, move one step in the Y direction to 1 and record a 1. The run-

472

ning sum, 0, is less than the number one step in the X direction
from the current starting point, 1. Therefore, move one step in
the X direction reaching the apex and record a 0. This completes
the process. The decoded bits are 001010 which must be reversed
to obtain the original bit sequence.

APPENDIX B

Proof of Theorem 1: We now proceed to show that as ¥V — =,
the maximum entropy scheme achieves a coding rate approaching
H{(p). We consider just the left half of Pascal’s triangle. Let (n,.)
be an element on the boundary. Then, we know from the defini-
tion that logs < ") < S <log < ntl), where n is the length

w® w*+1)

of the source run and the block length N = S +log,; S + 2. Adding
log» S + 2 to the above inequality, we have

1032(".)+loggs+255+log23

+2 < loga (".111) +logaS+2. (15)
w

n+1l
We note that log, (. 4 1) =logs (n + 1) —logs (w* + 1) + log2
w . -

n

(o

loga (n') +n-lloga S+2< N/n<n-lloga(n+1)—n-!
w " .

). Substituting this in (15) and dividing by n, we have n~!

logs(w*+ 1) + n~tlogs (n.) + n-l(lOég S + 2). Using Stirling's
w

approximation, it can be shown that nH(w*/n) = logs (w* + 1)
—log(n —wt+1)— log v2z <]ogg'(n.) <nH(w*/n) + loga(n
w

+ 1). Substituting this in (15), we have H(w*/n) = n~1loga (n —
w*+1)—n-llogsvV2x + n~1log, S — n~lloga (w* + 1) + 2/n
< N/n <H(w*/n)+2n~tlogy(n + 1) + n=log: S — n~1logs (w*
+ 1) + 2/n. We make use of the following inequalities

n~'logy(n —w*+1)<n7llog(n —w* + 2)
<n-tlogy{n—w*) +n~log22,

n=Vlogs {w* + 1) <n~tlogs (w* +2)

<n 'logsw* + 07 loga 2,

n=1log, (n — w®) + n~tlog, (w”)
< 2n~1logs (n/2) = 2n~" logs n — 2/n,

logs V2x <logo4 = 2.

IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 1977

Using the above inequalities, we arrive at the expression

w.
H (-——) —n~Vogan2+n-tlog: S
n

)
<N/n<H (E—) + 2n-tloga (n + 1)
n

+2n - Vops (n+ 1) 4 0V logy S 4 i loga 2.
Simplifying further, we get

(%) (%)

Since S — 1 is a lower bound for n and

logs (n2/8S
_ g2 (n?/)<
n

+ logs [2(n + 1)2S] .

n

{\—<H
n

lim S==,
N—w=
we have
limns=e
N—=
and
lim log n = Q.
N—= D
Therefore
tim N = lim H (‘“—)
I\"‘- n N—’I- N
However
£ 3
lim H (“’—) =H
N AN (p)
since S
w‘
lim — = p.
N--=x N
Therefore,
. N .
lim —= H(p) wpl.

N-ea N

We have shown that the per letter coding rate approaches the
optimal value as the block length approaches infinity, regardless
of the source statistics.

REFERENCES

\/[1] T. J. Lynch, “Sequence time coding for.data compression,” Proc.

JEEE, vol. 54, pp. 1490-1491, Oct. 1966.

{2} L. D. Davisson, “Comments ont *Sequence time coding for dats
compression,” " Proc. JEEE, vol. 54, p. 2010, Dec. 1966.

{3] J. P. M. Schalkwijk, “An algorithm for source coding,” IEEE Trans.
Inform. Theory, vol. 1T-18, pp. 395-399, May 1972.

[4] L. D. Davisson, “Comments on ‘An algorithmn for source coding,””
JEEE Traons. Inform. Theory, vol. IT-18, p. 827, Nov. 1972

|5) ——. “Universal noiseless coding,” JEEE Trans. Infurm. Theory.
vol. IT-19, pp. 783-795, Nuv. 1973.

{6] C. E. Shannon, “A mathematical theory of communication,” Beil
Syst. Tech. J., vol. 27, pp 379423, 623-636, 1948.

[7] J. C. Lawrence, " Application of Schalkwijk source cuding techniques
to pictorial sources,” Naval Flectronics Laboratory Center Technical
Report 1867, San Diego, CA, 12 Murch 1973.

